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Abstract

Neuromodulation is considered a key fac-
tor in learning and memory in biological neu-
ral networks. Recent computational mod-
els of modulated plasticity have shown in-
creased learning capabilities also in artificial
neural networks. In this study, a reward-
based dynamic scenario is employed to test
networks evolved with modulatory dynamics.
The analysis on the networks shows that neu-
romodulation does not only allow for bet-
ter learning, but accelerates the computa-
tion in decision processes. This appears to
derive from topological features in modula-
tory networks displaying more direct sensory-
motor connections, whereas non-modulatory
networks require longer pathways for signal
processing. This computational advantage in
increased decision speed could contribute to
unveil the fundamental role of neuromodula-
tion in neural computation.

1. Introduction

Neuromodulation has become the focus of ex-
tensive studies with the realisation that a large
variety of mneural functions are regulated by
modulatory chemicals, both in invertebrate and
vertebrate organisms  (Burrell and Sahley, 2001,
Birmingham and Tauck, 2003). Neurotransmitters
such as Acetylcholine (ACh), Norepinephrine (NE),
Serotonin (5-HT) and Dopamine (DA) closely
affect synaptic plasticity, neural wiring, Long Term
Potentiation (LTP) and Long Term Depression
(LTD). Short and long term configurations of
brain structures are affected by modulatory chem-
icals, and consequently those have been linked
to the formation of memory, the implementation
of new mneural functions, learning and adaptation
(Jay, 2003, Abbott and Regehr, 2004).

The realisation that Hebbian plasticity does not
account entirely for experimental evidence on synap-

tic modification has brought further focus on mod-
ulatory dynamics. Associative learning, like clas-
sical and operant conditioning, seems to be based
on additional mechanisms besides the Hebbian
synapse.  Studies on the mollusc Aplysia cali-
fornica (Roberts and Glanzman, 2003) have shown
neuromodulation to regulate classical conditioning
(Carew et al., 1981, Sun and Schacher, 1998), oper-
ant conditioning (Brembs et al., 2002) and wiring in
developmental processes (Marcus and Carew, 1998).

At a cellular level, modulatory neurons appear
to release modulatory chemicals at target synapses,
affecting plasticity mechanisms rather than postsy-
naptic activations. In (Bailey et al., 2000a), het-
erosynaptic modulation is shown to stabilise Heb-
bian plasticity by means of nonlinear effects of mod-
ulatory signals; when neuromodulation is coupled
with presynaptic stimuli, it results in the activa-
tion of transcription factors and protein synthe-
sis during synaptic growth. This in turn leads
to durable and more stable synaptic configuration
(Bailey et al., 2000b). The underlying idea is that
the synaptic growth that occurs in the presence of
modulatory chemicals is long lasting, i.e. has a sub-
stantially longer decay time than the same growth in
absence of modulation. A graphical representation is
shown in Figure 1.

These cellular processes are believed to be
the working mechanisms from which system and
behavioural dynamics emerge. The release of
dopamine, for example, has been linked to learning
in (Schultz et al., 1993), where activation patterns in
monkeys’ brains followed a measure of prediction-
error in classical conditioning.

Computational models of neuromodulation
(Fellous and Linster, 1998, Doya, 2002) offer a valid
tool to investigate the potential of neural dynamics
both for understanding biological networks and
for the design of artificial bio-inspired systems.
The modulating action on synaptic plasticity, and
consequently the role in the long term modification
of neural pathways, place neuromodulation as



Figure 1: (A) Hebbian (homosynaptic) plasticity: the
connection strength is updated as function of pre- and
postsynaptic activity of standard neurons (S). (B) Het-
erosynaptic mechanism, or neuromodulation: a third
neuron (M) mediates synaptic growth, i.e. the amount
of modulatory signal determines the response to Hebbian
plasticity.

ideal candidate to explain the acquisition of new
input-output relations — achieving learning — and
the retention of those — achieving memory.

For the reason above, studies on computational
models often employ learning and memory tasks as
benchmark. A modulatory neuron was implemented
to evolve learning behaviour for a foraging task in
uncertain environments (Niv et al., 2002), where a
simulated bee learnt and remembered the colour of
the best rewarding flowers. The same experimental
setting was chosen also in (Soltoggio et al., 2007) to
show that modulatory architectures could freely de-
velop throughout evolution to achieve higher perfor-
mance. Although various implementations and mod-
els of modulatory dynamics have been proposed so
far, the concept of modulatory neurons as compu-
tational units for building networks was introduced
and exploited only recently in (Soltoggio et al., 2007,
Soltoggio et al., 2008). In (Soltoggio et al., 2008),
plastic networks could be enriched by second-type
modulatory neurons, resulting in evolutionary ad-
vantages in dynamic, reward-based scenarios. The
experiments included a single and double T-maze
explored by an agent where the location of a high
reward was periodically changed during the agent’s
lifetime.

The studies above describe a growing evidence
that neuromodulation favours better performance
in learning problems. However, many aspects re-
garding the computational advantages of neuromod-
ulation have not been well described yet. To ad-
dress this issue, this paper focus on the propaga-
tion of signals in modulatory networks. The reward-
based scenario of the double T-maze described in
(Soltoggio et al., 2008) is implemented here with the
aim of reproducing and analysing modulatory neu-
ral networks. Surprisingly, the analysis reveals that

modulatory networks do not only achieve better
learning, but allow for a faster computation at deci-
sion points which derives from shorter input-output
connections. A further test with a stricter time con-
straint confirms the advantage in decision speed of
networks with modulated plasticity.

The next sections 2, 3 and 4 introduce respectively
the model of neuromodulation, the T-maze learning
problem, and the evolutionary process that consti-
tute the preliminary steps and experimental settings
as in (Soltoggio et al., 2008). Following, the analy-
sis of the networks outlines the learning performance,
decision speed, topologies, and the test with enforced
decision speed. The paper ends with final remarks
in the conclusion.

2. A Model for Modulated Plasticity

Although different models of neurons have been
proposed in the last decades, most theoretical and
empirical studies on neural networks consider net-
work graphs where nodes are instances of the same
class. Biological neural networks, on the other
hand, display a large variety of neural types, shapes
and neurotransmitters that operate in close inter-
action. On this assumption, the idea of mod-
elling two types of neuron, a standard neuron and
a modulatory neuron, has been recently exploited in
(Soltoggio et al., 2008). The underlying principle is
that the two kinds of neuron transmit fundamentally
different types of signal: standard neurons transmit
signals that activate other connected neurons in cas-
cade; on the contrary, modulatory neurons propagate
modulatory signals that do not affect activations, but
rather modulate synaptic growth of target neurons.
This requires the existence of a traditional form of
plasticity (for instance Hebbian plasticity) on which
modulatory signals apply a gating operation. There-
fore, as in standard homosynaptic networks, stan-
dard neurons are capable of increasing or decreasing
incoming connection strengths according to models
of homosynaptic plasticity. Modulatory neurons, on
the other hand, intervene hierarchically on standard
neurons by gating (or modulating) plasticity of spe-
cific target neurons. A graphical representation of
the model is illustrated in Figure 2.

The model, inspired by the biological findings pre-
sented in the review paper (Bailey et al., 2000a), was
devised to address also limitations in artificial neu-
ral networks and robotics: continuously learning net-
works might display instability of neural structures
or catastrophic forgetting when new input-output
signals update the network connectivity. Neuromod-
ulatory signals are a possible solution to implement
event-based learning, enabling plasticity at target
neural areas and precise timing, and stabilising in-
formation into synaptic weights.

The model is expressed analytically by a multi-



Figure 2: Ovals represent standard and modulatory neu-
rons labelled with Std and Mod. A modulatory neuron
transmits a modulatory signal — represented as a coloured
shade — that diffuses around the synapses of the target
neuron. Modulation affects the update of the afferent
weights w1 4, w24 and w3 4.

plicative operation on the weight updates

Awj; = §j; - tanh(m;/2) (1)

where ¢;; is a plasticity term (described later) be-
tween neurons j and ¢, j is a standard neuron, and
m; is the modulatory signal perceived by the post-
synaptic neuron i (standard or modulatory).

The activation a; of a neuron and the value of
modulation m,; are computed by summing the inputs
from the two subsets (standard and modulatory) of
neurons in the network

a; = Z wji -+ 05 (2)

jEStd

m; = Z Wi - 05 +Mmgq (3)
JEMod

where wj; is the connection strength from neuron j
to 4, o; is the output of a presynaptic neuron com-
puted as function of the standard activation o;(a;) =
tanh(a;/2), mq is a default modulation value that
was set to 1.

The plasticity rule can effectively be implemented
with any form of homosynaptic plasticity. Here ¢
was described by the rule

d;; =n-[Aojo; + Boj + Co; + D] (4)

where o; and o; are the pre- and postsynaptic neu-
ron outputs, A,B,C,D and 7n are tuneable pa-
rameters. Equation 4 has been used in previ-
ous studies of neuromodulation (Niv et al., 2002,
Soltoggio et al., 2007). Its generality is given by the
presence of a correlation term A, a presynaptic term
B, a postsynaptic term C and a constant D. The use
and tuning of one or more of these terms allow for the
implementation of a large variety of plasticity rules
(Floreano and Urzelai, 2001).

3. Learning Sensory-Motor Relations
to Maximise Reward Intake

Dynamic, reward based environments are frequent in
the natural world. Even simple invertebrates have to
deal with changing environments where the location,
quantity and type of food vary according to many
factors like the season, weather, competition among
or within species, etc. In such conditions, the ability
to adapt and learn is a fundamental skill to survive.

For these reasons, the learning capabilities of
modulatory networks have been tested on dynamic
scenarios where uncertain reward locations were
to be learnt by simulated agents (Niv et al., 2002,
Soltoggio et al., 2007).

Here, the task of an agent in a double T-maze,
as in (Soltoggio et al., 2008), is to navigate the cor-
ridors, turn when it is required, collect the reward
at the end of the maze and return home (see Figure
3). This is repeated many times (trials) during a
lifetime. The task is to maximise the total amount
of reward collected. To do so, the agent needs to
learn where the high reward is located. During each
trial, the agent encounters two turning points dur-
ing the outgoing trip, and two turning points during
the return trip. At each turning point, the agent
will select a direction, either a left turn or a right
turn, with the purpose of reaching the reward first,
and then return home (the sensory-motor signals are
illustrated in Figure 4). Therefore, each trial is com-
posed of four critical decision points where the neural
controller — given the current state and the history
of collected rewards — has to take a decision. The
difficulty of the problem lies in the fact that the po-
sition of the reward changes across trials. When this
happens, the agent has to forget the position of the
reward that was learnt previously and explore the
maze again. This results in an uncertain foraging en-
vironment where the optimal pairing of actions and
reward is not fixed, requiring online learning.

An agent is given 200 trials. Each trial consists of
a number of steps during which the neural network is
updated and the agent moved accordingly. The large
reward is randomly positioned and relocated after 50
trials on average, with a random variability of £15.
The agent that fails to return to the home position
collects a negative reward of 0.3 and is repositioned
at home. The agent is required to maintain a forward
direction in corridors and perform a right or left turn
at the turning points: failure to do so results in the
agent crashing, and a negative reward of 0.4 is given.
Each corridor and turning point stretches for three
steps of the agent. Higher or variable numbers of
steps have been tested providing similar results.
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Figure 3: Double T-maze with homing. The agent nav-
igates on a 1D track to one maze-end and returns home
(H) after collecting the reward. The amount of reward
is proportional to the size of the token (1.0 for the large
reward, 0.2 for the small one). The agent performs many
trials during a lifetime. After a number of trials, the high
reward is moved to another location. The agent, unaware
of the change, discovers a low reward upon returning to
the usual location. When this happens, the agent will
have to try another maze-end until the new location of
the reward is discovered.

4. Phylogenetic Outset of
Neuromodulation

Adaptive behaviour was sought here by applying the
Darwinian principle in a simulated evolutionary pro-
cess. Standard and modulatory neurons were utilised
as building blocks, and networks with such compo-
nents were bred in the environment described in the
previous section.

The process was implemented to reproduce
the algorithm in (Soltoggio et al., 2008) and it is
briefly outlined here.  Network topologies were
searched by means of an Evolution Strategy (ES)
(Béck et al., 1997). A matrix of real values encoded
the network weights w;;. The 5 parameters for the
plasticity rule A, B, C, D and 7 of Equation 4 evolved
in the range [-1,1] for A-D, and [-100,100] for 7.
Genes in the range [-1,1] were mapped into phenotyp-
ical values with a cubic function to introduce a bias
towards small values. Phenotypical weights were in
expressed in the range [-10,10]. Insertion, duplica-
tion and deletion of neurons were applied with prob-
abilities 0.04, 0.02 and 0.06 respectively: those op-
erators add, duplicate and remove respectively rows
and columns in the weight matrix. Newly inserted
neurons had the same probability (0.5) of being stan-
dard or modulatory.

Mutation acted on each gene with a positive or
negative perturbation d = W - exp(—P - u), where
u was a uniformly distributed [0,1] random num-
ber, and P a precision parameter here set to 180
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Figure 4: Inputs and output of the neural network. The
Turn input is 1 when a turning point is encountered. M-
E is Maze-End: it goes to 1 at the end of the maze. Home
becomes 1 at the home location. The Reward input re-
turns the amount of reward collected at the maze-end, it
remains 0 during navigation. One output determines the
actions of turning left (if less than -1/3), right (if greater
than 1/3) or straight navigation otherwise. Turning while
in a corridor, or going straight at a turning point result
in crashing, and the agent starting from the home loca-
tion. Both inputs and internal neural transmission are
affected by 1% uniform noise.

(Rowe and Hidovic, 2004). One point crossover on
the weight matrix was applied with probability 0.1.
The selection mechanism was implemented as a lo-
cal tournament selection of size 5 on a spatially dis-
tributed population. A population of a 1000 indi-
viduals was employed with 2000 generations as ter-
mination criterion. After generation 1000, insertion
and duplication of neurons were set to zero, while
leaving deletion probability unchanged, to minimise
the number of nodes in the networks.

With these settings, two parallel sets of experi-
ments were executed. The evolutionary algorithm
with the same initial conditions was run with modu-
latory neurons disabled in one case, and enabled in a
second case. Fifty independent runs were performed
for plastic and modulatory networks.

5. Analysis of Results

Tests indicated that 47 out of 50 modulatory net-
works and 4 out of 50 standard plastic networks
solved the task. The problem was considered
solved when an agent scored on average at least
180 of total reward collected, out of 200 available
L. This data confirms and reproduces the results
in (Soltoggio et al., 2008), showing that modulatory
networks evolved to achieve a higher level of learn-
ing. Because that previous study showed already the
advantage in performance in terms of total reward
collected, here the focus is on network features and
topologies.

IBecause the location of the reward is hidden to the agent,
until it comes across it, the maximum fitness is 195.2 due to
the exploratory trials that occur initially and when the reward
changes location.



To compare network features, two fundamental
points have to be considered: 1) different runs
evolved considerably different topologies, number of
neurons and plasticity rules, given the large search
space and the neuron insertion/duplication/deletion
operators; 2) plastic networks, achieving inferior per-
formance, have a more limited functionality than
modulatory networks: comparing modulatory net-
works that solved the problem with plastic networks
that failed on average might not be significant. As a
result of this last observation, it was decided to con-
sider for analysis only the networks that achieved full
functionality: in all, 47 modulatory networks, and 4
plastic networks. Unfortunately, this small number
of plastic networks did not allow sufficient statisti-
cal analysis. Consequently, additional 100 runs were
launched, resulting in 7 new successful standard plas-
tic networks. In conclusion, the statistical analysis
was carried out considering 11 plastic networks and
20 modulatory networks.

Even considering networks with similar perfor-
mance, the evolutionary process designed a large va-
riety of neural topologies, number of neurons and
plasticity rules across different independent runs.
However, this is true only for modulatory networks:
a closer inspection revealed that all standard plas-
tic networks evolved with the same topology. An
example is reported in Figure 6. On the contrary
modulatory networks had an average of 3.7 neurons
and 17.4 connections with standard deviations of 0.9
and 9.2 respectively, resulting in high diversity of
networks, all of them however achieving optimal be-
haviour. This first finding might provide an explana-
tion for the considerable difference in successful rate
of the evolutionary runs: while standard networks
achieve full functionality with only one specific ar-
chitecture, modulatory networks display a variety of
optimally performing topologies. This suggests that
the search space — when modulatory neurons are in-
troduced — becomes richer of multiple global optimal
solutions. It is also possible that modulatory neurons
create neutral networks in the search space, allowing
for a higher evolvability.

5.1 Decision Speed

Despite the number of neurons varied across different
modulatory networks, the input and output, imposed
by the environmental settings, were the same for all
networks. On this basis, it was decided to compare
input-output signal propagation considering the net-
works as a black box.

Surprisingly, the analysis revealed that the out-
puts of modulatory networks on average seem to re-
act faster at turning points than the output of plas-
tic networks. Figure 5 shows the absolute values of
the output neurons (one for each network) when the
network under test encounters a turning point. The
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Figure 5: Absolute values of output signals at a turning
point of modulatory and plastic networks with similar
performance. Modulatory networks (upper graph) ap-
pear to react faster to the turning point and provide a
quicker decision. Plastic networks show a longer reaction
time. The thick vertical lines indicate the constraints at
Sampling points (S): the first line from left indicates that
the output is required to be less than 0.33 (to maintain a
straight direction in the corridor). The second line shows
that the output is required to be higher in absolute value
than 0.33 (to perform a turning action).

number of computational steps required by modula-
tory networks to indicate a turning direction is 1.43
(average on 20 networks). Plastic networks, on the
other hand, take 2.21 steps (average on 11 networks)
to indicate the turning preference. Moreover, Figure
5 shows that whereas a substantial number of modu-
latory networks react in one step, none of the plastic
networks had such a short reaction time.

The turning action expressed by the output is a
required reaction at turning points: failure to turn —
i.e. the output to indicate left or right turn — results
in the agent crashing. Therefore, it was assumed here
that the relevant part of the computation involved in
the decision of which direction to take had to lie in
the pathway between in the turn-input signal and the
output. Accordingly, the network topologies were
analysed to discovered relevant features in pathways
from turn-input to output neuron.

The networks resulted to have on average a dis-
tance of 1.1 connections between input and output
in the modulated case. Plastic networks have al-
ways 2 connections between turn-input and output,
i.e. there is never a direct connection between turn-
input and output. These data have a correspondence
to the time — expressed in network steps — to trigger
the output and indicate a turning direction. There-
fore, one can assume that the number of connections
through which the turn-input propagates correspond
roughly to the time required to complete the compu-
tation at the turning point and provide a direction of
navigation at the output neuron. For modulated net-
works, a direct connection between turn-input and
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Figure 6: Example of a plastic network achieving near-
optimal performance (plasticity rule A:-0.261,B:0,C:-
1,D:0,eta:-31.8). All plastic networks that achieved op-
timal fitness had this topology with one inner neuron
between the turn-input and the output.

output is frequently present; in plastic networks, the
turn-input requires to be processed by at least one
inner neuron. Examples of two representative net-
works are shown in Figure 6 for a plastic network
and Figure 7 for a modulated network.

It is important to note that, according to the ex-
perimental settings, the networks are given three
computational steps for each sensory-motor (input-
output) update. The output of the network is sam-
pled each three network steps, implying that no dif-
ference in behaviour or fitness can be detected if the
output changes in 1, 2 or 3 computational steps. so
long as the output reaches the required level before
being sampled. Therefore plastic networks derive no
disadvantage on performance? by having a path of
two serial connections between input and output.
Such configuration might have originated from im-
plementation aspects of the evolutionary process.

Similarly, although modulatory networks display
frequently a direct turn-input to output connection,
it is not excluded that other parts of the network
require longer processing time. In fact, the analysis
of modulatory networks showed other longer path-
ways departing from input signals like the "reward”
or "home” and innervating several other neurons.

Hence, although the analysis so far seems to indi-
cate a faster computation for the decision process in
modulatory networks, a further test is necessary.

5.2 Enforcing Speed

Reducing the available computational time at deci-
sion points is a way of compelling networks to react
quickly. If modulatory networks do indeed imple-
ment a faster decision process, this will result in an
advantage in performance whenever strict timing is
imposed. Accordingly, a new evolutionary process

2Remember that modulatory and plastic networks with
identical performance are compared here.
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Figure 7: Example of a modulatory network achieving
near-optimal performance (plasticity rule A:0, B:0, C: -
0.38, D:0, eta: 94.6). Most of these networks, like in this
case, show a direct connection between turn-input and
output. None of the plastic networks had this feature.

was devised with identical settings as previously, but
with only one computational step available at crit-
ical points in the maze. All the grey areas in the
maze of Figure 3 were presented to the network for
one computational step only. The new constraint re-
quires networks to take decision at turning points in
one computational step only, but also to acquire in-
formation on rewards and home in an equally short
time.

The results of 50 independent evolutionary runs
are illustrated in the box plots of Figures 8. What
is relevant here, more than the distance between the
boxes, is that none of the plastic networks scored
fitness close to the optimal values above 180. This
result allows for two considerations: 1) the constraint
on the decision speed is determinant for plastic net-
works that without sufficient computational time fail
to achieve learning and memory. 2) Modulatory net-
works are minimally affected by the reduced decision
time, resulting in a high percentage of successful so-
lutions.

Interestingly, these facts suggest that other longer
pathways in modulated networks are not employed
during the turning decision process, but are devoted
to other functions. Therefore it can be concluded
that decision speed is effectively enhanced in modu-
latory networks. What is the precise role of longer
modulatory pathways is not entirely clear, however,
it is evident that the direct connection between turn-
input and output pre-encodes the next turning di-
rection: a negative turn-input to output connection
will result in a left turn, whilst a positive connec-
tion will result in a right turn. Plastic networks are
unable to achieve this, implying that neuromodula-
tion is responsible for a pre-computation, resulting
in the encoding of the next turning direction into a
connection weight before the turn occurs. In modu-
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Figure 8: Box plots with performances of 50 runs with
the additional constraint of one computational step at
turning points. The boxes are delimited by the first and
third quartile, the line inside the boxes is the median
value while the whiskers are the most extreme data sam-
ples from the box not exceeding 1.5 times the interquar-
tile interval. Values outside this range are outliers and
are marked with a cross. Boxes with non overlapping
notches have significantly different median (95% confi-
dence) (Matlab, 2007). Although modulatory networks
register slightly decreased performance with respect the
experiments with longer decision time, plastic networks
were unable to evolve any optimal solution in this case.

latory networks, the learning process appears to cor-
respond to the transfer of information into weights.
Subsequently, the pre-computed information results
in a faster signal processing at turning points. Figure
9 shows an example of network solving the learning
problem with the strict time constraint.

5.8  The Dynamical System

Plots of activation and weight values in networks re-
vealed that the neural dynamics are highly complex
even for small networks. All the weights undergo
plasticity of Equation 4, implying that the weight
update is a linear combination of four terms depend-
ing of pre-, postsynaptic, correlated activities and
decay?. In addition, some or all neurons can be tar-
geted by modulatory signals, resulting in a modu-
lation whose intensity is the hyperbolic tangent of
the summation of all incoming modulatory signals.
Considering a 5-input 4-neuron network, the neural
dynamics result from a high complex interaction of
9 activation values, up to 4 modulated activities and
up to 36 plastic weights. The system is also strongly
affected by nonlinearity from saturation on weights
and the squashing effect of the hyperbolic tangent on
activations. Hence, this network is effectively a non-
linear system with up to 44 states, and 14 inputs (5

3Evolution might evolve to zero the contribution of some
of these terms.
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Figure 9: Example of a modulatory network achieving
near-optimal performance with the strict time constraint
of one step at decision points. The intricate network
structure appears to pre-compute the turning direction
and encode it into the direct turn-input to output path-
way. The thickness of the lines are approximate indica-
tors of connections strengths. This networks uses only a
postsynaptic plasticity rule (term C in Equation 4).

external input and 9 noise inputs on neural transmis-
sion). Although a thorough analysis of such system
could reveal important properties of the modulatory
model given by Equations 1-4, the task falls outside
the scope of this study.

6. Conclusion

This study considers performance and computational
aspects of plastic and plastic-modulated networks
evolved in a dynamic, reward based scenario where
learning events and decision processes determine the
fitness of an agent.

The learning capabilities of modulatory networks
are reproduced here to gain a further insight on com-
putational and topological aspects of networks with
modulated plasticity. A fundamental difference be-
tween plastic and modulatory networks was shown in
an increased sensory-motor propagation speed and
quicker responses in decision making for modulatory
networks with respect to standard plastic networks.
At a further inspection, this property appeared to de-
rive from more direct sensory-motor connections in
modulatory networks. The magnitude and signs of
those direct connections store a value that indicates
the direction at the next turning point. This fact
suggests that the decision at turning points is pre-
computed and hierarchically encoded by neuromod-
ulation onto the sensory-motor direct connection. In
conclusion, this results in a faster signal processing
during decision processes.

Modulated networks displayed a faster input-
output response than plastic networks even without
strict speed constraints. However, when the speed
constraint was imposed in the second evolutionary



experiment, forcing control networks to take quick
turning decisions at turning points, modulatory net-
works exhibited an even more considerable advan-
tage in performance by evolving successful solutions
where plastic networks failed.

The evolved modulatory networks have features
that depend strongly on the environment in which
the networks are evolved: other experiments on a
simpler maze without homing did not result in a
faster computation for modulatory networks. There-
fore, this study on a single learning problem, al-
though complex, does not allow to generalise the re-
sults on other learning problems. However, the inter-
esting features displayed in this particular instance
could emerge in a variety of similar or more complex
learning problems.

Future work could extend this analysis to other
learning problems and carry out a more extensive
analysis of neural dynamics. The direct input-output
pathways hierarchically modulated recall the concept
of feed-forward models in control systems and bio-
logical networks: whether neuromodulation is a bio-
logical mechanism to implement feed-forward models
in neural network is a challenging research question.
However, a careful analogy can be drawn by compar-
ing the pre-encoded information in the networks here
with feed-forward architectures that bypass neural
circuits to provide quicker motor responses. The re-
markable performance and computational speed ex-
hibited in the experimental results suggest the possi-
ble application of the model to a variety of learning
and decision making problems.
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